Help ?

IGMIN: We're glad you're here. Please click 'create a new query' if you are a new visitor to our website and need further information from us.

If you are already a member of our network and need to keep track of any developments regarding a question you have already submitted, click 'take me to my Query.'

Browse by Subjects

Welcome to IgMin Research – an Open Access journal uniting Biology, Medicine, and Engineering. We’re dedicated to advancing global knowledge and fostering collaboration across scientific fields.

Members

We strive to create a platform for scientists to engage across different fields and drive rapi

Articles

We strive to create a platform for scientists to engage across different fields and drive rapi

Explore Content

We strive to create a platform for scientists to engage across different fields and drive rapi

Identify Us

We strive to create a platform for scientists to engage across different fields and drive rapi

IgMin Corporation

Welcome to IgMin, a leading platform dedicated to enhancing knowledge dissemination and professional growth across multiple fields of science, technology, and the humanities. We believe in the power of open access, collaboration, and innovation. Our goal is to provide individuals and organizations with the tools they need to succeed in the global knowledge economy.

Publications Support
[email protected]
E-Books Support
[email protected]
Webinars & Conferences Support
[email protected]
Content Writing Support
[email protected]
IT Support
[email protected]

Search

Explore Section

Content for the explore section slider goes here.

16 of 172
Kinetic Study of the Removal of Reafix Yellow B8G Dye by Boiler Ash
Peterson Filisbino Prinz, Mariane Hawerroth, Liliane Schier de Lima and Juliana Martins Teixeira de Abreu Pietrobelli
Abstract

Abstract at IgMin Research

We strive to create a platform for scientists to engage across different fields and drive rapi

Engineering Group Mini Review Article ID: igmin125

Deep Semantic Segmentation New Model of Natural and Medical Images

Machine Learning Signal Processing DOI10.61927/igmin125 Affiliation

Affiliation

    1Department of Science Education, College of Science, National Taipei University of Education, Taipei City 10671, Taiwan

    2Department of Computer Science, College of Science, National Taipei University of Education, Taipei City 10671, Taiwan

1.2k
VIEWS
256
DOWNLOADS
Connect with Us

Abstract

Semantic segmentation is the most significant deep learning technology. 
At present, automatic assisted driving (Autopilot) is widely used in real-time driving, but if there is a deviation in object detection in real vehicles, it can easily lead to misjudgment. Turning and even crashing can be quite dangerous. This paper seeks to propose a model for this problem to increase the accuracy of discrimination and improve security. It proposes a Convolutional Neural Network (CNN)+ Holistically-Nested Edge Detection (HED) combined with Spatial Pyramid Pooling (SPP). Traditionally, CNN is used to detect the shape of objects, and the edge may be ignored. Therefore, adding HED increases the robustness of the edge, and finally adds SPP to obtain modules of different sizes, and strengthen the detection of undetected objects. The research results are trained in the CityScapes street view data set. The accuracy of Class mIoU for small objects reaches 77.51%, and Category mIoU for large objects reaches 89.95%.

Figures

References

    1. Shelhamer E, Long J, Darrell T. Fully Convolutional Networks for Semantic Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):640-651. doi: 10.1109/TPAMI.2016.2572683. Epub 2016 May 24. PMID: 27244717.
    2. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA. 2012; 1:1097–1105.
    3. Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv:1409.1556.
    4. Szegedy C. Going deeper with convolutions. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2015; 1-9. doi: 10.1109/CVPR.2015.7298594.
    5. He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. arXiv:1512.03385.
    6. Franke U. Making Bertha See, 2013 IEEE International Conference on Computer Vision Workshops. 2013; 214-221. doi: 10.1109/ICCVW.2013.36.
    7. Cakir S, Gauß M, Häppeler K, Ounajjar Y, Heinle F, Marchthaler R. Semantic Segmentation for Autonomous Driving: Model Evaluation, Dataset Generation, Perspective Comparison, and Real-Time Capability. arXiv:2207.12939. 2022.
    8. Hua M, Nan Y, Lian S. Small Obstacle Avoidance Based on RGB-D Semantic Segmentation. arXiv:1908.11675.
    9. Girisha S, Manohara Pai MM, Verma U, Radhika M Pai. Semantic Segmentation of UAV Videos based on Temporal Smoothness in Conditional Random Fields. 2020 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER). 2020; 241-245. doi: 10.1109 /DISCOVER50404.2020.9278040.
    10. Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid Scene Parsing Network. arXiv:1612.01105.
    11. Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans Pattern Anal Mach Intell. 2018 Apr;40(4):834-848. doi: 10.1109/TPAMI.2017.2699184. Epub 2017 Apr 27. PMID: 28463186.
    12. Chen LC, Papandreou G, Schroff F, Adam H. Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv:1706.05587.
    13. He K, Zhang X, Ren S, Sun J. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. arXiv:1406.4729.
    14. Chen LC, Papandreou G, Schroff F, Adam H. Rethinking Atrous Convolution for Semantic Image Segmentation. 2017.
    15. Heidler K, Mou L, Baumhoer C, Dietz A, Zhu XX. HED-UNet: Combined Segmentation and Edge Detection for Monitoring the Antarctic Coastline. arXiv:2103.01849.
    16. Takikawa T, Acuna D, Jampani V, Fidler S. Gated-SCNN: Gated Shape CNNs for Semantic Segmentation. arXiv:1907.05740.

Similar Articles

Dimensioning of Splices Using the Magnetic System
Ryszard Błażej, Leszek Jurdziak, Agata Kirjanów-Błażej, Paweł Kostrzewa and Aleksandra Rzeszowska
DOI10.61927/igmin204
Peritoneal Carcinomatosis from Ovarian Cancer: A Case Report
Andrea González De Godos, Enrique Asensio Diaz, Pilar Pinto Fuentes, Baltasar Pérez Saborido and David Pacheco Sánchez
DOI10.61927/igmin181