Help ?

IGMIN: We're glad you're here. Please click 'create a new query' if you are a new visitor to our website and need further information from us.

If you are already a member of our network and need to keep track of any developments regarding a question you have already submitted, click 'take me to my Query.'

Browse by Subjects

Welcome to IgMin Research – an Open Access journal uniting Biology, Medicine, and Engineering. We’re dedicated to advancing global knowledge and fostering collaboration across scientific fields.

Members

Our mission is to inspire scientific partnerships that contribute to faster advancements.

Articles

Our mission is to inspire scientific partnerships that contribute to faster advancements.

Explore Content

Our mission is to inspire scientific partnerships that contribute to faster advancements.

Identify Us

Our mission is to inspire scientific partnerships that contribute to faster advancements.

IgMin Corporation

Welcome to IgMin, a leading platform dedicated to enhancing knowledge dissemination and professional growth across multiple fields of science, technology, and the humanities. We believe in the power of open access, collaboration, and innovation. Our goal is to provide individuals and organizations with the tools they need to succeed in the global knowledge economy.

Publications Support
[email protected]
E-Books Support
[email protected]
Webinars & Conferences Support
[email protected]
Content Writing Support
[email protected]
IT Support
[email protected]

Search

Explore Section

Content for the explore section slider goes here.

Abstract

Abstract at IgMin Research

Our mission is to inspire scientific partnerships that contribute to faster advancements.

Engineering Group Review Article Article ID: igmin232

Mars Ascent Propellants and Life Support Resources - Take it or Make it?

Aerospace Engineering Energy Systems DOI10.61927/igmin232 Affiliation

Affiliation

    Dr. Donald Rapp, Mechanical and Chemical Engineering, Caltech - JPL (retired), 1445 Indiana Avenue, South Pasadena, CA 91030, USA, Email: [email protected]

1.2k
VIEWS
289
DOWNLOADS
Connect with Us

Abstract

Studies of Mars missions over the past thirty years lacked credible cost estimates, so the total mass of materiel delivered to Low-Earth Orbit (LEO) was typically used as a rough measure of relative mission cost because the complexity of the mission was thought to be roughly proportional to the initial mass in LEO (IMLEO). Historically, high launch costs led to large investments in space hardware development which led to high space mission costs. Reducing mass became the central theme of space mission engineering. We are now entering a new era where launch costs no longer have the impact that they would have two decades ago. Launch costs are coming down to the point where we must ask ourselves whether it now makes sense to bring ascent propellants and life support resources from Earth (with higher reliability as a bonus), as opposed to using in situ propellant production and cycling of life support resources.
This paper compares various options for bringing ascent propellants and life support resources from Earth vs. developing in situ. In short, it examines the “take it or make it” options for both technologies. For ISPP, the answer is clear: Mars ISPP is not worth the investment when launch costs are low. For life support, the most robust option is to bring life survival resources from Earth, and only use cycling to upgrade the quality of life for the crew.

References

    1. Rapp D. Human Missions to Mars. 3rd ed. Heidelberg, Germany: Springer-Praxis Books; Springer.
    2. Genta G. Next Stop Mars. Heidelberg, Germany: Springer-Praxis Books; Springer; 2016.
    3. Jones HW. The recent large reduction in space launch cost. In: 48th International Conference on Environmental Systems; 2018 Jul 8-12; Albuquerque, NM. Paper ICES-2018-81.
    4. Drake BG. Mars design reference architecture 5.0 study - executive summary. 2008. Available from: https://www.nasa.gov/wp-content/uploads/2015/09/373669main_2008-12-04_mars_dra5_executive_summary-presentation.pdf?emrc=db5841
    5. Jones HW. Take material to space or make it there? In: 2023 ASCEND Conference. Las Vegas, NV. 2023.
    6. Space Ambition. The Starship: can one rocket change the entire space industry? 2024. Available from: https://spaceambition.substack.com/p/the-starship-can-one-rocket-change
    7. Weinzieryl MC, Lucas K, Sarang M. Space X, economies of scale, and a revolution in space access. Harvard Business School Report 9-720-027; 2021.
    8. Ash RL, Dowler WL, Varsi G. Feasibility of rocket propellant production on Mars. Acta Astronautica. 1978;5:705-724.
    9. Sanders G, Kleinhenz J. In situ resource utilization (ISRU) "Envisioned future priorities". In: Space Resources Roundtable (SRR). Golden, CO. 2022.
    10. Rapp D. Use of extraterrestrial resources for human space missions to Moon or Mars. 2nd ed. Heidelberg, Germany. Springer-Praxis Books; Springer. 2018.
    11. Hanford AJ. Advanced life support research and technology. NASA Report NASA/CR-2004-208944C. 2004.
    12. Hanford AJ. Advance life support baseline values and assumptions. NASA Report NASA/CR-2004-208941. 2006.
    13. Allen CS, Burnett R, Charles J, et al. Guidelines and capabilities for designing human missions. NASA Report NASA/TM-2003-210785. 2003.
    14. Jones H. Minimum risk space habitat and life support. In: 2020 International Conference on Environmental Systems. 2020; Paper ICES-2020-222.
    15. Rapp D, Inglezakis V. Mars in situ resource utilization (ISRU) – a historical review and appraisal. Appl Sci. 2024;14:653.
    16. Rapp D. Near term NASA Mars and lunar in situ propellant production (ISPP): complexity vs. simplicity. Space Sci Technol. 2024.
    17. Bagdigian RM, et al. International space station environmental control and life support system mass and crewtime utilization in comparison to a long duration human space exploration mission. In: 45th International Conference on Environmental Systems. Seattle, WA. 2015; Paper ICES-2015-094.
    18. Jones HW. Redundancy: how many unreliable spares are needed for high reliability and confidence on a time-limited mission? Personal communication; 2021.
    19. Owens AC, et al. Integrated trajectory, habitat, and logistics analysis and trade study for human Mars missions. In: ASCEND 2020. Virtual. 2020.
    20. Broyan JL, et al. NASA environmental control and life support technology development for exploration: 2020 to 2021 overview. In: 50th International Conference on Environmental Systems. 2021; Paper ICES-2021-384.
    21. Owens AC, Cirillo WM, Piontek N, et al. Analysis and optimization of test plans for advanced exploration systems reliability and supportability. In: 50th International Conference on Environmental Systems; 2021; Paper ICES-2020-199.
    22. Sanders G, Kleinhenz J, Linne D. NASA plans for in situ resource utilization (ISRU) development, demonstration, and implementation. Presentation to COSPAR. 2022. Available from: https://ntrs.nasa.gov/api/citations/20220008799/downloads/NASA%20ISRU%20Plans_Sanders_COSPAR-Final.pdf
    23. Jones HW. Life support with failures and variable supply. In: 40th International Conference on Environmental Systems. Barcelona, Spain. 2010.
    24. Using space-based resources for deep space exploration. 2024. Available from: https://www.nasa.gov/overview-in-situ-resource-utilization/
    25. Elliott J, Sherwood B, Austin A, et al. ISRU in support of an architecture for a self-sustained lunar base. In: 70th International Astronautical Congress (IAC); Washington, DC. 2019. Paper IAC-19-D3,2A,2,x51412.
    26. Zubrin R. Op-ed | Lunar Gateway or Moon Direct? Space News. 2019. Available from: https://spacenews.com/op-ed-lunar-gateway-or-moon-direct/